

Missive documentation

Missive is a Python framework for writing message processors.

Please beware that Missive does not (yet) maintain a stable API and is not ready for production use.

Missive’s documentation is split into to two parts: narrative documentation to
help explain the features (and rationale) of Missive and a reference to consult
for the specifics of each class and function.

User guide

This is the narrative part of the documentation and explains Missive piece by
piece. If you’re short on time (or patience!) simply read the quickstart and
get going.

	Quickstart
	A simple example

	Routing and matchers

	Message formats

	Hooks

	Pluggable adapters

	Testing

	Dead letter queues (DLQs)

	What’s not included
	Message publication

	Message libraries

	Message validation

	Key features
	Easy routing

	Pluggable adapters

	An easy way to write fast tests

	Dead letter queues

	Adapters
	Built-in adapters
	Stdin

	WSGI

	Redis

	Writing custom adapters

Reference

Documentation for all classes and functions that are part of Missive.

	missive
	missive package
	Subpackages
	missive.adapters package
	Submodules

	missive.adapters.redis module

	missive.adapters.stdin module

	missive.adapters.wsgi module

	Module contents

	missive.dlq package
	Submodules

	missive.dlq.sqlite module

	Module contents

	Submodules

	missive.messages module

	missive.missive module

	missive.shutdown_handler module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Get started quickly with this guide, covering all the main features of Missive.

A simple example

import missive

from missive.adapters.stdin import StdinAdapter

processor = missive.Processor()

@processor.handle_for(lambda m: m.raw_data == b"Hello")
def greet(message, ctx):
 print("Hello whoever you are")
 ctx.ack()

stdin_processor = StdinAdapter(missive.RawMessage, processor)

if __name__ == "__main__":
 stdin_processor.run()

The above code:

	Creates a new processor called “processor”

	Creates a new handler for b”Hello” messages

	Adapts the processor for stdin

	(If the file is being run directly), runs the processor

Save this as hello_processor.py and then run it:

python3 hello_processor.py

Routing and matchers

Missive routes incoming messages to specific handlers based on the matchers
provided. In the example above the matcher is a lambda function but matchers
can be any python Callable - for example def functions or classes that
implement the __call__ method. Here’s a sample class:

class HasLabelMatcher:
 def __init__(self, label):
 self.label = label

 def __call__(self, json_message):
 return json_message.get_json().get("label") == label

The above matcher class will match any messages with the label matching what it
was constructed with. Here’s how you might use it:

processor = missive.Processor()

@processor.handle_for(HasLabelMatcher("sign-in"))
def record_sign_ins(message, ctx):
 ...

@processor.handle_for(...)
def another_matcher(message, ctx):
 ...

The above processor would route messages with the label “sign-in” to the
record_sign_ins handler.

Matchers help ensure that messages of certain types are sent directly to the
relevent code for dealing with them.

Message formats

You will notice that the above example had a message with a get_json method.
That was a JSONMessage instead of a RawMessage. Processors can be
specialised on specific message types. Some popular message types are provided
and custom message types can be written easily by subclassing Message.

If you are using Python’s typechecking facilities you can enforce message types
by applying a type to your processor:

All handlers for this message will be typechecked against JSONMessage
json_processor: missive.Processor[missive.JSONMessage] = missive.Processor()

Hooks

You can register hooks to run at certain times:

	before_processing - at startup

	after_processing - at shutdown

	before_handling - before each message

	after_handling - after each message

Here’s an example that logs the time taken to handle each message

from logging import getLogger

proc = missive.Processor()

logger = getLogger(__name__)

@proc.handle_for(...)
def some_handler(message, ctx):
 ...

@proc.before_handling
def record_start_time(processing_ctx, handling_ctx):
 handling_ctx.state.start_time = datetime.utcnow()

@proc.after_handling
def print_end_time(processing_ctx, handling_ctx):
 logger.debug("took %s", datetime.utcnow() - handling_ctx.state.start_time)

Pluggable adapters

The initial example used a “stdin” adapter but adapters are pluggable and not
(usually) tied up with the message format that you are using.

Instead of running a message processor using unix’s stdin and stdout you might
want to use Redis’s PubSub facility:

from missive.adapters.redis import RedisPubSubAdapter
redis_pubsub_processor = RedisPubSubAdapter(
 missive.RawMessage,
 processor)

redis_pubsub_processor.run()

As you can see, changing the transport mechanism for messages is just a matter
of what adapter is used. Just as with message formats, some adapters are
provided but custom adapters can be (somewhat) easily written by subclassing
the abstract Adapter class.

Note

Using HTTP

One important adapter is the WSGIAdapter, which allows message processors
to be run as web applications (via a WSGI server such as gunicorn or
uwsgi). This can be a handy way to provide a web API for message senders
than for whatever reason can’t or don’t want to connect to your message
bus.

Testing

One very important feature is the ability to run tests without sending messages
over a real instance of your chosen message bus. Missive includes a test
client that allows for this:

import json

test_client = json_processor.test_client()
message = missive.JSONMessage(json.dumps({"name": "Cal"}).encode("utf-8"))

test_client.send(message)

assert message in test_client.acked
assert ... # anything else

There are a number of advantages to making use of a special test client that
cuts out the real message bus:

	It’s easier to assert that messages are acked/nacked/etc

	It’s much faster than using a real message bus (and tests can be run in parallel)

	It removes the need for test code to navigate the background threading
patterns that are common in the real adapters.

Dead letter queues (DLQs)

One of the first questions that comes up in message processing systems is:

What should I do when an error occurs during message processing?

Unlike when writing request-response model applications (like web APIs), where
errors can be reported directly to the client, in publish-subscribe models the
emitter of the message often is not able (or interested) in receiving an error
from your processor.

What to do then? The answer is to have a special storage location for messages
that cause errors in your system so that you can save them for manual
inspection or debugging. It might be that some messages are improperly
formatted or that your application has bugs.

Note

The “non-ack anti-pattern”

One important anti-pattern to avoid in message processors is failing to ack
unprocessable messages. This leaves them on the bus (often causing them to
be reprocessed over and over) eventually clogging up the bus and causing
further problems.

This special place is called a “dead letter queue”. Missive provides a way to
register a location in which to put unprocessable messages to get them out of
the message bus and somewhere else where they can be kept until they can be
debugged.

from missive.dlq.sqlite import SQLiteDLQ

Problem messages will be written to this sqlite database
json_processor.set_dlq(SQLiteDLQ("/var/dlq.db"))

Warning

“DLQs” are poorly named

Despite the fact that DLQs are “dead letter queues”, message queues are
usually a bad places for a DLQ. Message queues are designed for fast
moving, in-and-out items. Dead letter queues need to be ready to deal with
slower moving items that are occasionally very numerous - in the case where
someone puts a lot of bad messages onto a shared bus.

A database is usually the right place.

What’s not included

Message publication

Missive is focused on message processing and not message publication. There
are lots of different ways to emit messages and Missive does not try to be an
all-encompassing mechanism for being systems that emit and recieve messages.

This would be of limited use anyway - messages are a common means of
inter-system communication. The publisher of messages may well be a Java or
C++ application.

Message libraries

Likewise Missive does not try to manage message libraries or schemas. There
are many many different ways to communicate schemas in-band or out-of-band and
Missive aims to be able to handle all of them but does not seek control of the
message schema.

Message validation

Missive is not a validation library and if you want to apply validation rules
to messages you will need to do that yourself.

Key features

Missive is not in general an “opinionated” framework but it does have certain
ideas as key principles.

Warning

Missive is in an early stage and not all of the promises here are yet
implemented.

Easy routing

Routing messages to their appropriate handlers is repetitive, error prone
code. Missive provides an easy interface for using message “matchers” to
indicate which handlers are to be applied to which messages.

The interface is dead simple: any callable taking a message as an argument and
returning a boolean is a valid matcher.

Pluggable adapters

Missive is designed to allow your core message handling code to be agnostic
about which message transport system has delivered the message. This is done
by providing pluggable adapters into which missive.Processor objects
are inserted.

Using pluggable adapters has a number of practical advantages.

Pluggable adapters also allows you to easily change your mind about which
message transport you will use. If late in the project you learn that a key
message publisher will not be allowed to connect to your message bus you will
be able to offer them webhook-style access via the
missive.adapters.wsgi.WSGIAdapter. If your organisation switches from
Redis to Kafka (or vice versa) you will be able to switch out one adapter for
another and run the same code.

An easy way to write fast tests

Writing automated tests is essential to producing good quality software. Tests
that interface with third-party systems such as your message bus are essential.

That said, it is not necessary that every test write to and from your message
bus. It’s helpful to write the majority of your unit tests assuming that your
message bus will work as expected and spare your time suite the time and
complexity of putting every test message over the real bus.

Worse yet: some message buses are too proprietary (or licensing too expensive)
for developers to be able to run them locally. Having pluggable adapters
allows processors to be tested with one adapter (usually
missive.TestAdapter) and finally deployed onto another. It used to be
that this was only the case in the financial sector but with the rise of cloud
computing many message transports cannot be run locally at all.

Dead letter queues

One of the biggest stumbling blocks in writing message processors is in
handling messages that, for whatever reason, cannot be processed.

Counter-intuitively, despite the fact that this messages cannot be processed
correctly they must regardless be acked to prevent them from being repeatedly
redelivered - lowering throughput and creating congestion.

Unprocessable messages need to be stored somewhere for manual inspection and
debugging. Missive provides a simple interface for doing so and comes,
“batteries included” with a few well designed dead letter queue options.

Adapters

Adapters transform missive.missive.Processor instances into working
message processors for the message transport which they implement.

The adapter system used in Missive allows any processor to be ported easily
between different message transports.

Note

Porting between adapters assumes that no transport-specific features are
being used! For example, if message leases are being extended via a
transport-specific system then that handler is obviously no longer portable
between transports.

Missive provides tools to help you avoid transport-specific code but “escape
hatches” are always provided.

Built-in adapters

Missive comes with adapters for some message transports. Over time it is hoped that
wider support can be added. If support for a transport you want is not present
it should not be too hard to add, see Writing custom adapters.

Stdin

One useful source of messages (particularly for testing or local reply) is
traditional unix pipes and files.

	
class missive.adapters.stdin.StdinAdapter(message_cls: Type[M], processor: missive.missive.Processor[~M][M], filelike: Optional[BinaryIO] = None)

	
	
ack(message: M) → None

	Mark a message as acknowledged.

	Parameters

	message – The message object to be acknowledged.

	
nack(message: M) → None

	Mark a message as negatively acknowledged.

The meaning of this can vary depending on the message transport in
question but generally it either returns the message to the message bus
queue from which it came or triggers some special processing via some
(message bus specific) dead letter queue.

	Parameters

	message – The message object to be acknowledged.

WSGI

WSGI is the standard Python way of serving over HTTP. Many different “WSGI
servers” exist which will efficiently serve a “WSGI application” for example
gunicorn and uwsgi.

The WSGI adapter is useful for implementing “webhooks” (special endpoints that
other services will call when events happen).

It also allows you to make your processor available over HTTP to allow access
to it for users who for whatever reason aren’t able to use a “proper” message
transport.

It is also often the easiest thing to get deployed anywhere - running a new web
service is typically easy in most organisations but running a new message bus
is not.

Note

HTTP is comparatively slow - offering services over HTTP is convenient but
there is a much higher associated overhead compared to using a true message
transport.

Redis

Missive has built-in support for Redis’s Pub/Sub [https://redis.io/topics/pubsub] functionality.

Writing custom adapters

Writing a custom adapter is as simple as subclassing
missive.missive.Adapter and implementing an ack and a nack method.

	
class missive.Adapter(processor: missive.missive.Processor[~M][M])

	Abstract base class representing the API between missive.Processor and adapters.

	
ack(message: M) → None

	Mark a message as acknowledged.

	Parameters

	message – The message object to be acknowledged.

	
nack(message: M) → None

	Mark a message as negatively acknowledged.

The meaning of this can vary depending on the message transport in
question but generally it either returns the message to the message bus
queue from which it came or triggers some special processing via some
(message bus specific) dead letter queue.

	Parameters

	message – The message object to be acknowledged.

The way that the adapter is to be run is completely undefined. Many adapters
define a run method that makes the necessary network connections but this can
vary widely and is not mandated.

missive

	missive package
	Subpackages
	missive.adapters package
	Submodules

	missive.adapters.redis module

	missive.adapters.stdin module

	missive.adapters.wsgi module

	Module contents

	missive.dlq package
	Submodules

	missive.dlq.sqlite module

	Module contents

	Submodules

	missive.messages module

	missive.missive module

	missive.shutdown_handler module

	Module contents

missive package

Subpackages

	missive.adapters package
	Submodules

	missive.adapters.redis module

	missive.adapters.stdin module

	missive.adapters.wsgi module

	Module contents

	missive.dlq package
	Submodules

	missive.dlq.sqlite module

	Module contents

Submodules

missive.messages module

	
class missive.messages.DictMessage(raw_data: bytes, decoder: Callable[[bytes], Dict[Any, Any]])

	Bases: missive.missive.Message

	
contents() → Dict[Any, Any]

	

missive.missive module

	
class missive.missive.Adapter(processor: missive.missive.Processor[~M][M])

	Bases: typing.Generic

Abstract base class representing the API between missive.Processor and adapters.

	
ack(message: M) → None

	Mark a message as acknowledged.

	Parameters

	message – The message object to be acknowledged.

	
nack(message: M) → None

	Mark a message as negatively acknowledged.

The meaning of this can vary depending on the message transport in
question but generally it either returns the message to the message bus
queue from which it came or triggers some special processing via some
(message bus specific) dead letter queue.

	Parameters

	message – The message object to be acknowledged.

	
class missive.missive.HandlingContext(message: M, processing_ctx: missive.missive.ProcessingContext[~M][M])

	Bases: typing.Generic

	
ack() → None

	

	
nack() → None

	

	
class missive.missive.JSONMessage(raw_data: bytes)

	Bases: missive.missive.Message

	
get_json() → Any

	

	
class missive.missive.Message(raw_data: bytes)

	Bases: object

	
class missive.missive.ProcessingContext(message_cls: Type[M], adapter: missive.missive.Adapter[~M][M], processor: missive.missive.Processor[~M][M])

	Bases: typing.Generic

	
ack(message: M) → None

	

	
handle(message: M) → None

	

	
handling_context(message: M) → Iterator[missive.missive.HandlingContext[~M][M]]

	Enter the handling context, including calling hooks.

	
nack(message: M) → None

	

	
class missive.missive.Processor

	Bases: typing.Generic

	
after_handling(hook: Callable[[missive.missive.ProcessingContext[~M][M], missive.missive.HandlingContext[~M][M]], None]) → None

	

	
after_processing(hook: Callable[[missive.missive.ProcessingContext[~M][M]], None]) → None

	

	
before_handling(hook: Callable[[missive.missive.ProcessingContext[~M][M], missive.missive.HandlingContext[~M][M]], None]) → None

	

	
before_processing(hook: Callable[[missive.missive.ProcessingContext[~M][M]], None]) → None

	

	
context(message_cls: Type[M], adapter: missive.missive.Adapter[~M][M]) → Iterator[missive.missive.ProcessingContext[~M][M]]

	Enter the processing context, including calling hooks.

	
handle_for(matcher: Callable[[M], bool]) → Callable[[Callable[[M, missive.missive.HandlingContext[~M][M]], None]], None]

	

	
set_dlq(dlq: MutableMapping[bytes, Tuple[M, str]]) → None

	

	
test_client() → Iterator[missive.missive.TestAdapter[~M][M]]

	

	
class missive.missive.ProcessorHooks(*args, **kwds)

	Bases: typing.Generic

	
class missive.missive.RawMessage(raw_data: bytes)

	Bases: missive.missive.Message

A raw message of just bytes with no interpretation

	
class missive.missive.TestAdapter(processor: missive.missive.Processor[~M][M])

	Bases: missive.missive.Adapter

	
ack(message: M) → None

	Mark a message as acknowledged.

	Parameters

	message – The message object to be acknowledged.

	
close() → None

	

	
nack(message: M) → None

	Mark a message as negatively acknowledged.

The meaning of this can vary depending on the message transport in
question but generally it either returns the message to the message bus
queue from which it came or triggers some special processing via some
(message bus specific) dead letter queue.

	Parameters

	message – The message object to be acknowledged.

	
send(message: M) → None

	

missive.shutdown_handler module

	
class missive.shutdown_handler.ShutdownHandler(callback: Optional[Callable[[int], None]] = None)

	Bases: object

	
enable() → None

	

	
set_flag() → None

	

	
should_exit() → bool

	

	
signal_handler(signal: int, frame: Any) → None

	

	
wait_for_flag() → None

	

Module contents

missive.adapters package

Submodules

missive.adapters.redis module

missive.adapters.stdin module

	
class missive.adapters.stdin.StdinAdapter(message_cls: Type[M], processor: missive.missive.Processor[~M][M], filelike: Optional[BinaryIO] = None)

	Bases: missive.missive.Adapter

	
ack(message: M) → None

	Mark a message as acknowledged.

	Parameters

	message – The message object to be acknowledged.

	
nack(message: M) → None

	Mark a message as negatively acknowledged.

The meaning of this can vary depending on the message transport in
question but generally it either returns the message to the message bus
queue from which it came or triggers some special processing via some
(message bus specific) dead letter queue.

	Parameters

	message – The message object to be acknowledged.

	
run() → None

	

missive.adapters.wsgi module

Module contents

missive.dlq package

Submodules

missive.dlq.sqlite module

	
class missive.dlq.sqlite.SQLiteDLQ(connection_str: str)

	Bases: collections.abc.MutableMapping, typing.Generic

	
oldest() → Tuple[missive.missive.Message, str, datetime.datetime]

	

Module contents

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 missive	

 	
 	
 missive.adapters	

 	
 	
 missive.adapters.stdin	

 	
 	
 missive.dlq	

 	
 	
 missive.dlq.sqlite	

 	
 	
 missive.messages	

 	
 	
 missive.missive	

 	
 	
 missive.shutdown_handler	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | J
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	ack() (missive.adapters.stdin.StdinAdapter method)

 	(missive.missive.Adapter method)

 	(missive.missive.HandlingContext method)

 	(missive.missive.ProcessingContext method)

 	(missive.missive.TestAdapter method)

 	
 	Adapter (class in missive.missive)

 	after_handling() (missive.missive.Processor method)

 	after_processing() (missive.missive.Processor method)

B

 	
 	before_handling() (missive.missive.Processor method)

 	
 	before_processing() (missive.missive.Processor method)

C

 	
 	close() (missive.missive.TestAdapter method)

 	
 	contents() (missive.messages.DictMessage method)

 	context() (missive.missive.Processor method)

D

 	
 	DictMessage (class in missive.messages)

E

 	
 	enable() (missive.shutdown_handler.ShutdownHandler method)

G

 	
 	get_json() (missive.missive.JSONMessage method)

H

 	
 	handle() (missive.missive.ProcessingContext method)

 	handle_for() (missive.missive.Processor method)

 	
 	handling_context() (missive.missive.ProcessingContext method)

 	HandlingContext (class in missive.missive)

J

 	
 	JSONMessage (class in missive.missive)

M

 	
 	Message (class in missive.missive)

 	missive (module)

 	missive.adapters (module)

 	missive.adapters.stdin (module)

 	
 	missive.dlq (module)

 	missive.dlq.sqlite (module)

 	missive.messages (module)

 	missive.missive (module)

 	missive.shutdown_handler (module)

N

 	
 	nack() (missive.adapters.stdin.StdinAdapter method)

 	(missive.missive.Adapter method)

 	(missive.missive.HandlingContext method)

 	(missive.missive.ProcessingContext method)

 	(missive.missive.TestAdapter method)

O

 	
 	oldest() (missive.dlq.sqlite.SQLiteDLQ method)

P

 	
 	ProcessingContext (class in missive.missive)

 	
 	Processor (class in missive.missive)

 	ProcessorHooks (class in missive.missive)

R

 	
 	RawMessage (class in missive.missive)

 	
 	run() (missive.adapters.stdin.StdinAdapter method)

S

 	
 	send() (missive.missive.TestAdapter method)

 	set_dlq() (missive.missive.Processor method)

 	set_flag() (missive.shutdown_handler.ShutdownHandler method)

 	should_exit() (missive.shutdown_handler.ShutdownHandler method)

 	
 	ShutdownHandler (class in missive.shutdown_handler)

 	signal_handler() (missive.shutdown_handler.ShutdownHandler method)

 	SQLiteDLQ (class in missive.dlq.sqlite)

 	StdinAdapter (class in missive.adapters.stdin)

T

 	
 	test_client() (missive.missive.Processor method)

 	
 	TestAdapter (class in missive.missive)

W

 	
 	wait_for_flag() (missive.shutdown_handler.ShutdownHandler method)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Missive documentation

 		
 Quickstart

 		
 A simple example

 		
 Routing and matchers

 		
 Message formats

 		
 Hooks

 		
 Pluggable adapters

 		
 Testing

 		
 Dead letter queues (DLQs)

 		
 What’s not included

 		
 Message publication

 		
 Message libraries

 		
 Message validation

 		
 Key features

 		
 Easy routing

 		
 Pluggable adapters

 		
 An easy way to write fast tests

 		
 Dead letter queues

 		
 Adapters

 		
 Built-in adapters

 		
 Stdin

 		
 WSGI

 		
 Redis

 		
 Writing custom adapters

 		
 missive

 		
 missive package

 		
 Subpackages

 		
 Submodules

 		
 missive.messages module

 		
 missive.missive module

 		
 missive.shutdown_handler module

 		
 Module contents

_static/ajax-loader.gif

